3.1: Complex Numbers

- Fun Fact: Complex numbers came to existence because mathematicians were interested in factoring all polynomial linearly. Now we use complex numbers in many areas of engineering.
- i is the square root of $-1 .(i=\sqrt{-1})$
- That is, i is a number such that $i^{2}=-1$.
- An imaginary number is the principal square root of a negative number. If $-r<0$, is negative, then the principal square root of $-r$ is $\sqrt{-r}=i \sqrt{r}$ is an imaginary number. Example $\sqrt{-4}=$ $\sqrt{4} \sqrt{-1}=2 i$ or $\sqrt{-2}=\sqrt{2} \sqrt{-1}=\sqrt{2} i$.
- \boxtimes Be careful! When replacing $\sqrt{-1}$ by i, the exponent rules for real numbers don't work. Example: $\sqrt{-2} \sqrt{-3} \neq \sqrt{(-2)(-3)}$
- To write square root of a negative number as an imaginary number: Separate the $\sqrt{-1}$ and then simplify the other square root.
- Complex numbers: They are of the form $a+b i$ where a and b are real numbers. a is called the real part and b is called the imaginary part of the number. If $a=0$, then the complex number is an imaginary number. If $b=0$, then the complex number is a real number.
- Why complex numbers? To be able to find roots of all polynomials. Examples: $x^{2}+1=0$, $x^{2}+4 x+5=0$ and \ldots
- Complex Plane is a two dimensional plane where each point associates with a complex number. The x-value of a point represent the real part of number and the y-value of the point is the imaginary part of the number. The number (a, b) represents complex number $a+b i$.
Note that any point on x-axis is a real number and any point on y-axis is an imaginary number.

Operations on Complex Numbers

Let $a_{1}+b_{1} i$ and $a_{2}+b_{2} i$ be two complex numbers. Then

- the sum of the two is $\left(a_{1}+b_{1} i\right)+\left(a_{2}+b_{2} i\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) i$
- the difference of the two is $\left(a_{1}+b_{1} i\right)-\left(a_{2}+b_{2} i\right)=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) i$
- the product of the two is
$\left(a_{1}+b_{1} i\right) \cdot\left(a_{2}+b_{2} i\right)=\underbrace{a_{1} a_{2}+a_{1} b_{2} i+b_{1} a_{2} i+b_{1} b_{2} i^{2^{*}}}_{\text {Foil the two }} \stackrel{-b_{1} b_{2}}{=}\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+b_{1} a_{2}\right) i$
- The complex conjugate of $a+b i$ is $a-b i$. We use the complex conjugates to divide two complex numbers. Main property of complex conjugates is

$$
(a+b i) \cdot(a-b i)=a^{2}+b^{2}
$$

- Dividing two complex numbers: If $a_{2} \neq 0$ or $b_{2} \neq 0$, then $\frac{a_{1}+b_{1} i}{a_{2}+b_{2} i}=\left(\frac{a_{1}+b_{1} i}{a_{2}+b_{2} i}\right) \cdot\left(\frac{a_{2}-b_{2} i}{a_{2}-b_{2} i}\right)=$ $\frac{\left(a_{1}+b_{1} i\right)\left(a_{2}-b_{2} i\right)}{\left(a_{2}+b_{2} i\right)\left(a_{2}-b_{2} i\right)}=\frac{\left(a_{1} a_{2}+b_{1} b_{2}\right)+\left(-a_{1} b_{2}+b_{1} a_{2}\right) i}{a^{2}+b^{2}}=\frac{\left(a_{1} a_{2}+b_{1} b_{2}\right)}{a^{2}+b^{2}}+\frac{\left(-a_{1} b_{2}+b_{1} a_{2}\right)}{a^{2}+b^{2}} i$
Note that we used the complex conjugate to rewrite a fraction (division) in the standard form, $a+b i$, of a complex number.
- Power to integer exponent: For now, we only discuss the integer exponents and we discuss them in terms of multiplication. If $n>0$ is a whole number then $(a+b i)^{n}=\underbrace{(a+b i)(a+b i) \cdots(a+b i)}$. When calculating this product, simplify using $i^{2}=-1, i^{3}=-i, i^{4}=1, i^{5}=i, i^{6}=-1, i^{7}=-i$, $i^{8}=1, i^{9}=i$ and \ldots.
Notice that higher powers of i reduce to power 0 or 1 .
- How do we verify a complex/real number is a root for a polynomial/equation? Plug in that complex/real number in the polynomial/equation. If the polynomial is zero or equation is satisfied, then the number is a root.

1. Perform the following operations and express the result as a simplified (in standard form $a+b i$) complex number.
(a) $9+(3+11 i)$
(f) $(3 i) \cdot(9+11 i)$
(b) $11 i+(9+13 i)$
(g) $(9+11 i) \cdot(13+3 i)$
(c) $(9+11 i)+(13-3 i)$
(h) $\frac{9+11 i}{3 i}$
(d) $(13+3 i)-(1-i)$
(i) $\frac{9+11 i}{13}$
(e) $9 \cdot(9+13 i)$
(j) $\frac{9+11 i}{3+4 i}$
2. Perform each of the following operations.
(a) i^{24}
(c) i^{23}
(e) i^{100}
(g) i^{102}
(b) i^{41}
(d) i^{26}
(f) i^{101}
(h) i^{103}
3. Evaluate the following algebraic expressions.
(a) If $f(x)=x^{2}-2 x+2$, evaluate $f(2 i)$.
(b) If $f(x)=x^{2}-2 x+5$, evaluate $f(i+1)$.
4. Verify that $-i-1$ is a solution to $x^{2}+2 x+2=0$.
5. Plot $-2+3 i$ and $3-2 i$ on the complex plane. Clearly mark each point.

6. Write $\frac{2-3 i}{7+i}$ in the form $a+b i$.
(a) $11-23 i$
(c) $-\frac{11}{50}-\frac{23}{50} i$
(b) $\frac{11}{8}-\frac{23}{8} i$
(d) $\frac{11}{50}-\frac{23}{50} i$
7. Solve $(x+11)^{3}=27$ for x, in complex numbers domain.
8. Solve $(x-11)^{3}+125=0$ for x, in complex numbers domain.
9. Solve $3 x^{4}-13 x^{2}-10=0$ for x, in the complex numbers domain.

Related Videos

1. Complex Operations: https://mediahub.ku.edu/media/t/l_mtbgzpkr
2. Watch Gateway Video 30: https://mediahub.ku.edu/media/MATH+104+-+030.m4v/0_n9tednmc
3. Watch Gateway Video 31: https://mediahub.ku.edu/media/MATH+104+-+031.m4v/0_2p6x67n0
4. Watch GatewayVideo 26: https://mediahub.ku.edu/media/MATH+104+-+026.m4v/0_9id5s81p
